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1. Introduction. In [5], Marquardt developed and extended an iterative method

which had been proposed by others (see [4]) for non-linear least squares
problems. Marquardt's paper demonstrates that the method is an interpolation
between Newton's method (actually the Taylor Series or Gauss method for non-
linear least squares) and the gradient or steepest descent method. The
method produces a correction vector to the current iterate whose length and
orientation is controlled by an adjustable parameter A. Marquardt produced
an algorithm for choosing A at each iteration. The methcd has worked well
on a variety of problems, e.g. [6]. It is generally more stable than the

Taylor Series mcthod and faster than the steepest descent method.
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2. The Method in Hilbert Space. This paper extends the method to (real)
Hilbert space. It turns out that each of the three theorems in Marquardt
[5] has its counterpart in Hilbert space; however all of the proofs are new.
Let X and Y be real Hilbert spaces, F a non-linear operator F: X - Y.
Then the least squares problem may be stated as, for fixed y € Y, minimize
over X the functional
@ = |yl ? = 5-Fw), y-Feo> 2.1)
Let X, be the first approximation to an x that minimizes Q. Let P be
the Frechet derivative of F, with increment h; P = P(x)h, and let P* denote
the adjoint of P. Then the operator A: X = X, where A = P*(xo)P(xo), is linear,
self-adjoint, and positive. We assume that A is strictly positive and bounded,
i.e., there exist constants Bl, BZ such that 51>Bz>0, and
32<x,x> < <Ax,x> < Bl<x,x> (2.2)
for all x ¢ X.
The gradient of Q at xo,increment h, is -2<y—F(xo), P(xo)h>. Alternatively,
apart from the constant -2, we can express the gradient at X - as the
functional
g = P*(xo)[y-F(xo)]; (2.3)
.£ is an element of X,

Putting d = x-xé, ve :define

Q(d) = y-F(x)-P(x_)d, y-F(x )-P(x )d>;

~

Q is bilinear in d and will be a good approximation to Q in a sufficiently

small neighborhood of X i.e., for small d. We shall call a set of points
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{:x : 6 (d) £ nu }- for fixed p an ellipsoid.

For A > 0, we write

(A + AI)d = g, (2.4)
We note that when A = 0, (2.4) is just the usual “normal equation" of least
squares, and 3 = A-lg determines the unique minimum of Q(d). Theorem 1 suggests
the way in which (2.4) can be used to construct a method for minimizing Q(x).
The proof is similar to the stronger version of Marguardt's Theorem 1 contained
in Meeter [7 ]. As this paper was being written, we discovered essentially the
same result, with a different proof and motivation, in Balakrishnan [1 ],

pp. 160-161.

THEOREM 1. Let do be the solution of (2.4) for a fixed value of A > 0. Then

d determines the minimum of Q everywhere except over the interior of the

ellipsoid f: {%:akd).f akdo)}. In particular, do minimizes Q uniquely over the

sphere & centered at X with radius ” doll.

PROOF. We first observe that, in the usual least squares manner, @ can be
expressed as the set of all d such that

<A(d-d), d-d > < a, (2.5)
where w = akdo) - ||y-F(xo)-P(xo)3||2.

The first assertion of the theorem is obvious, since equality holds
in (2.5) only for boundary points of R, and from the original definition of
Q we see that do is a boundary point.

More importantly for the purposes of the iterative method, we show

that the sphere & centered at X is included in the region in which Q is



-4 -

minimized by do. There are many ways to do this. One could adapt the proof
found in Morrison [9 ], or use the argument found in Meeter [7 ]. Here we
show that the intersection of ¢ and Q consists of the point do.

First we note that from (2.4) and the definition of 3,

A(do-ﬁ) = (e-M) - aa"'g = SY} (2.6)
Also, for all d in ¢,

2 2
< >, < = >,
a @l ol < <ajarliall llall < v =<a,a>0 1%,
so that we can say
<d,d> < <d,d>, (2.7
with equality holding only if d = do' Now take some point d in . We have
< A(d-d), d4-d> = <A(d-d°+do-d), d-d°+d°-d>
= -- -- -A —- >
<a(d-d), d-d > + 2<A(d-d), d-d > + ©.
The first term is non-negative. From (2.6), the second term is
2<-Md_, d-d >=2M<d , d>-<d, &>l
o o o’ o o
Applying (2.7), the second term is also non-negative, and zero only if do =d.
(If A = 0, do = d, 2 is a point and the theorem is a trivial result). Thus,
for d € 9,
<A(d-d), d-d > > o
unless d = do, which proves that ¢ and £ have only the point do in common.
This implies that the unique minimum of 6 over ® is attained at do.

Now let us regard do’ the solution of (2.4), as a function of A. A

way of controlling the length of do is given by

THEOREM 2. “ do(l) ” is a continuous, strictly decreasing function of A such

that || 4. M | >0 as A =,
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PROOF. Let d1 = do(ll), d2 = do(lz), kl-lz =y
Then, from (2.4),

(A+111)d1 = (A+l21)d2 s (2.8)
or A(dl-dz) + lz(dl-dz) = - ydr
Thus, taking norms,

2 -2 2
e ll© = vl a1 (a a1~ . (2.9)
Similarly, we can obtain
2 -2 2
I a,l* = vl a+r 1) (d;-a |l
Then

Il a,IP-1l o, 1B = [< (A0 1)(d;-d)) , (A+M 1) (d;-d,)
- (AFA,1)(4;-4)), (A+AZI)(d1-d2)>]

= [(x -2, 2y < dy-dy,d =d, > + 2(A -X)) <A(d)-d,), d)- d2>] .

The expression in square brackets has the same sign as ll 27 and is zero only
if d; = d,, so that ve can assert i d1|| < |i dZH when X,> 1, i.e., Il a I
is strictly decreasing.

, fixed, vith 11>12,

a1 <y~ 2l @, [l a)-4,1f

Using (2.8), and holding A

-2 2 2 2
< vl @n,nll 2| eyl 2l ayll? |
- 2
< w3 @ P | 9, 11
Letting ll -+ » shows that Ildo(l)u - 0.

To show that ||do(l)|| is a continuous function of A, from (2.8) we

obtain

-1
dy=d, = (A=) AN D) Ty,



-6 -
thus

-l < 20 (e D™ (el - (2.10)

From (2.2) we know that < 0¥+111)x,x> > (ﬂ2+11) <x,x>, for all x € X, where
BZ is fixed and positive. Thus, as long as 11_2 - e>~62, where ¢ is some

- - 1
constant > 0, (A+A,I) 1 exists and || (A+A, 1) 1” < z . Holding A, fixed,

12‘2 0, we see from (2.10) that I]dl-dzll -+ 0 as 11 - 12, hence ||d1" - | dZ“

as A, - XZ’ proving lldo(l)“ is continuous at A

1 2°

 The connection between this method and the gradient method, and a

{
means of controlling the orientation of the correction vector, is established

by

THEOREM 3. The angle O between d° and g is a continuous, strictly decreasing

function of A. As A »x~, @ » 0, and do rotates toward g.

e

PROOF. We will make frequent use of the fact that the operator A+AI and its
inverse are linear, self-adjoint, strictly positive, and bounded. For conven-
ience, we will show cos%a is increasing, where
cos?a = <g,0k+ll)-18>2/” g |l 2” (A+11)-18|’2-
The denominator of cos @ is a continuous function of A, from Theorem 2. As
for the numerator, using the notation of Theorem 2,

1< g,4,> - < g,0,5] = [<g,d-a,5 < Il ell lla-a,ll,
and holding X, fixed, we know || d;-d || » 0 as 2~ 2, .
Hence cos @ is the ratio of two continuous functions so @ is a continuous
function of A, A > 0.

Now we examine the behavior of cosza in a small neighborhood of some

fixed value of A, For |yl sufficiently small, A+(2+y)I is a strictly positive
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self-adjoint operator. Writing B = A+AI,

-1 1

(B-!yl)-l =@ ey et - st

Ve make the one~to-one transformation g = Bz, so that for small .IYVI, fixed A,
cos?a = < Bz,(x-wn‘l)'lz>2/ < Bz,Bz> <(1+VB‘1)'1z, (3 H7 1z >, (2.11)
We can choose Iyl small enough to have “YIB']'” < 1l. Accordingly, the power
series expansion of the operator (I+yB-1)-1 will be convergent. The numerator
of (2.11) can be rewritten as

< Bz,(l-yB’l-wZB'z-. 2P [< Bz,z> - y < Bz,B'1z> + yz< Bz,3'2z> -'....]2
=< Bz,z>2-2y < Bz,z> < z,z> + ofy) . (2;12)

The remaining factors in (2.11) are written as -1

< BZ,BZ>.1 [< (I-YB-I YZB-Z--QQO)Z’ (I’YB-I'WZB-Z-OOOQ)Z >]

< Bz,Bz>-1 [<z,z>-2y < B-lz,z>+ o(y) ]

-1
< Bz,Bz>-1<z,z> [I-Zy < B-lz,z> < z,z>'1+ o(y) ]

]

< Bz,Bz> l<z,z> [1+2y < B lz,2><z,257 1 0(y):l (2.13)

Multiplying (2.12) and (2.13), we obtain

cos’a = H Bz | -2<<Bz,z>2<z,z>i-2Y[<B-lz<, 2><Bz, z>2—<zi,z>2<B>z,z>]>+ o(y).

Thus to show cosza is strictly increasing, we need only to show that the term
in square brackets is strictly positive. That is, we must show that

l,,2><Bz,z> > <z,25° . (2.14)

<B
From Schwarz's inequality, for any W,
< w,s> < Bu,Bw> > < w,Bv>, (2.15)

unless w and Bw are linearly dependent. But if w and Bw are linearly dependent
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then B = uI, implying either cosza =1, or w= 0, But we will require w = C-lz,

where c2 = B. Since z = B-lg, w # 0 because g # 0. (1f g # 0 we have achieved
a relative minimum of Q, and iteration ceases.) The substitution w = cC 'z
reduces (2.15) to (2.14). Thus, for all A > 0, cos @ is a continuous, strictly
increasing function of A,
A similar technique shows that cos@ -1 as A » = . Briefly, for
A > 0, we rewrite cosza as
cosza = <g, (I+l-1A)-1g>2/ <g,g> < (I+)~_1A)-lg, (I+1-1A)-1g> .

For A sufficiently large, we can again use the power series expansion to obtain

<g,2>°- 27 ag, > <g,g> + o(A7h)

cos Q4 = _1 -1
<g,g> [<g,g> -2A "<Ag,g>+ o(d )]

which shows that cos @ -1 as A -+ =, Since g is fixed, do rotates towards
g as A -

A convergence p;:oof for the method may be obtained as was done by
Tornheim [10} for Euclidean n-space. Let S = {xcx : Qx) < xo}.

THEOREM 4: Suppose Q(x) has a second (Gateaux) derivative Q" (x,h,h), and

2
suppose there exists p_ > o such that |Q"(x,h,h)| < |h|| /po for all xeS, heX.

Then it is possible to choosc a sequence )“n such that Q(xn-l-l) converges

downward to a limit, where x

-1 _
SRR S dn + (An + lnI) gy DT 0,1,....

PROOF. The above conditions are sufficient to insure that by correcting xn
with a vector Mg u>0, we can by proper choice of p have Q(xn +ug) < Q(xn),

” g ” 7‘ 0. See Goldstein [2]. Since d_ has a positive projection on g ,
n n n

and Q(x) is continuous, Theorems 2 and 3 indicate that it will always be

possible to choose ln sufficiently laxrge that Q(xn—i-l)<Q(xn)' Since Q(x) is

bounded below, the sequence Q(x(kn)> converges downward to some limit.



-9 -

3. The Connection with Newton's Method. Although the method as developed in

Section 2 is actually a type of interpolation between the Taylor Series or
Gauss Method and the gradient method, we can also regard it as connecting
Newton's Method and the gradicent or steepest descent method. |
Suppose now that F is a nonlinear operator F:X-X where X is a real
Hilbert space. If, for some xcX, a solution to the equation
F(x) =0 (3.1)
exists, and F has a Frechet derivative P(x,h), Newton's method for solving
(3.1) is written as the sequcnce
x =% PG RGO, (3.2)
n=0,1..., derived by equating to the zero vector a linear approximation to
F at x - See Kantorovich [3] or Moore (8]. If we put dn = x - X, and
define again the lincar self-adjoint operator A = P*(Xn)P(xn), we obtain from
(3.2)
-Adn = P*(xn)F(xn). (3.3)
On the other hand, in order to solve (3.1) by the gradient method, we might
seek to solve the functional cquation
f(x) = <Fx),F(x)> =0
by making our correction 8y to X proportional to the negative gradient of
f(x), or
g, @ -ZP*(xn)F(xn),
which would mean that our method would determine dn from
(A+kI)dn =8
as before. Since both the Taylor Series-Gauss and Newton methods begin with
the same linear approximation to a nonlinear operator F, perhaps the designation

"Newton-Gradient" can be justified on the grounds of euphony.
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At a later date we hope to be able to investigate the more difficult
questions of regions and spceds of convergence, and present examples.
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